
Leveraging mass spectrometry data to understand maternal and fetal exposome in pregnancy

University of California, San Francisco



Christopher Wild (2005): Complementing the Genome with an

Exposome encompasses:

the *totality* of human environmental exposures **from conception onwards**

Picture source: D.P. Jones, Yale symposium presentation 2017; Jessica Young's FYC6230 Blog; K. Sainani, BCR 2016

MCPP

Chemisome: the chemical components of the human <u>exposome</u> [*i.e.*, totality of human environmental exposures from conception onwards (Wild 2005)]

Phthalate Fluore

Only <3% of the ~8,000 high-use chemicals are being biomonitored (targeted method)

Goal:

- Characterize the pregnancy chemisome
- Prioritize chemicals of interest for further investigation

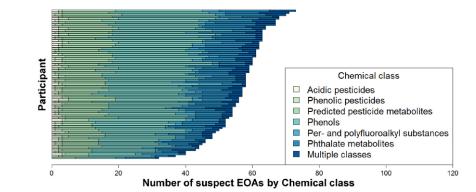
How? – Suspect Screening

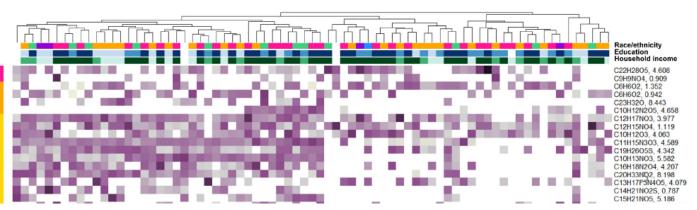
Research

Environmental Health Perspectives 2018 doi.org/10.1289/EHP2920

A Suspect Screening Method for Characterizing Multiple Chemical Exposures among a Demographically Diverse Population of Pregnant Women in San Francisco

Aolin Wang,^{1,2*} Roy R. Gerona,^{3*} Jackie M. Schwartz,¹ Thomas Lin,³ Marina Sirota,^{2,4} Rachel Morello-Frosch,⁵ and Tracey J. Woodruff^{1,6}


¹Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA

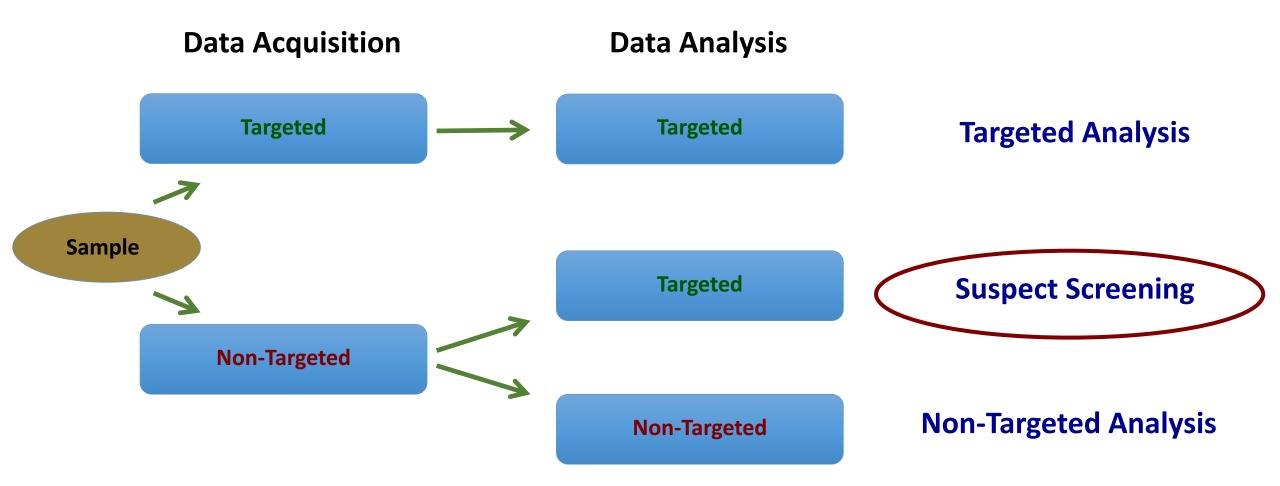

²Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA

³Clinical Toxicology and Environmental Biomonitoring Lab, University of California, San Francisco, California, USA

⁴Department of Pediatrics, University of California, San Francisco, California, USA

⁵School of Public Health and Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA ⁶Philip R Lee Institute for Health Policy Studies, University of California, San Francisco, California, USA

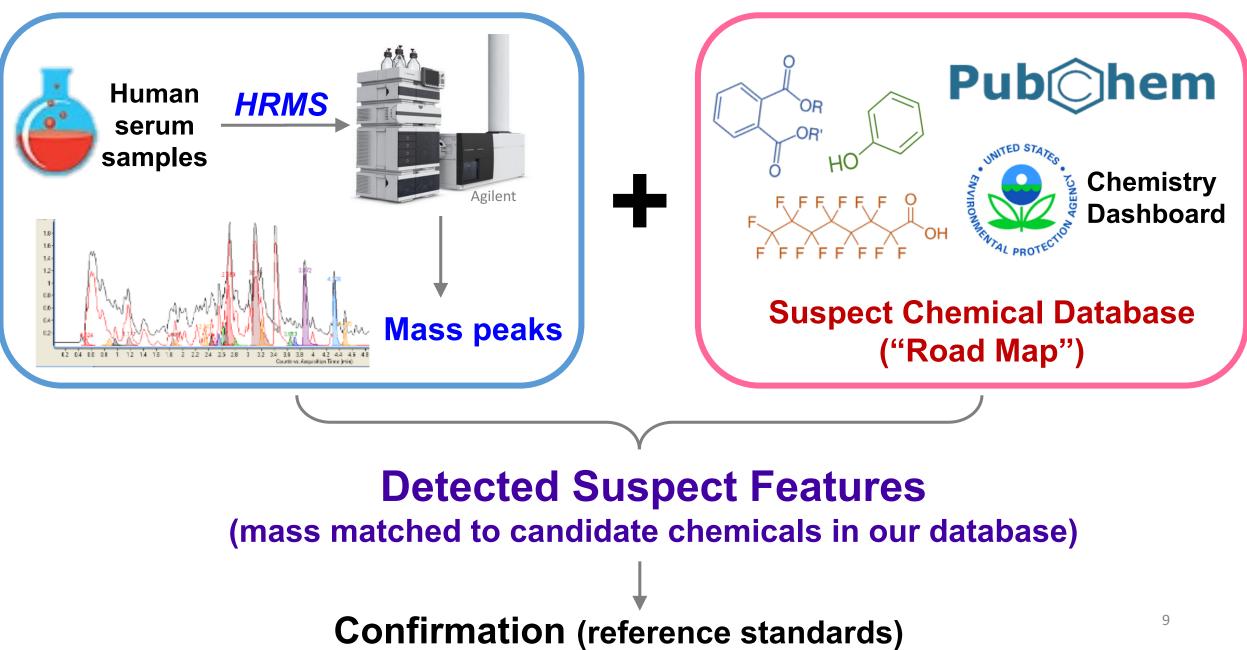
Required Analytical Platform: High Resolution Mass Spectrometer


Usually used in tandem with chromatography

Separation of molecules by ionization, and sorting by them by mass (m/z, molecular weight)

Current advances allow sub-2ppm mass accuracy

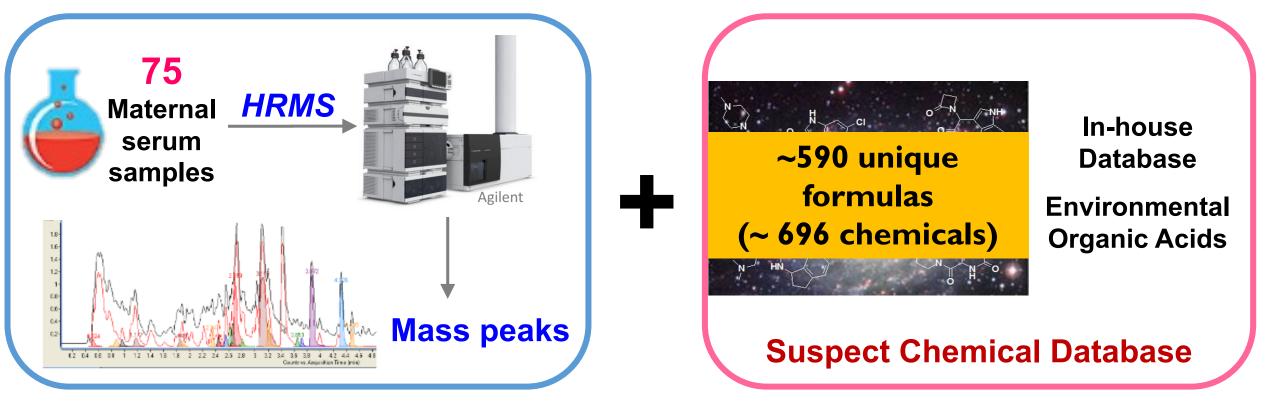
Allows unambiguous assignment of formula to measured masses


Types of Analyses Available Through HRMS

Types of Analyses Available Through HRMS

- Targeted Analysis
 - Reference standard available (RT, HRMS, MS/MS)
 - Acquisition: Targeted; Analysis: Targeted
- Suspect Screening
 - Prior information available BUT no reference standard available
 - Acquisition: Non-Targeted; Analysis: Targeted
- Non-Targeted Analysis
 - NO prior information available
 - Acquisition: Non-Targeted; Analysis: Non-Targeted

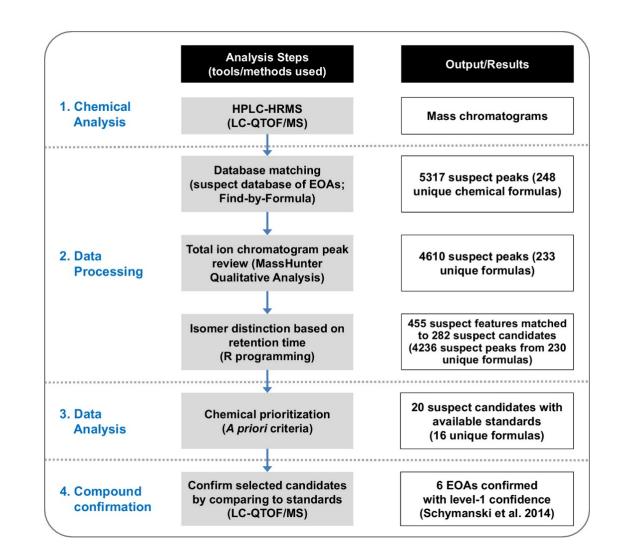
Suspect Screening: High-Res Mass Spec (HRMS) + Database

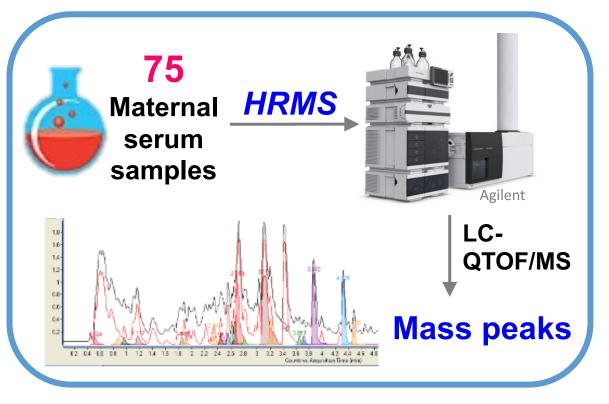

Suspect Features Detection (and Confirmation)

• "Find by Formula"

- Accurate mass
- Isotope pattern
- Peak Shape
- (Retention Time)

	Values to match	Mass	
Formula Matching	Mass tolerance	+/- 10ppm	
Negative lons	Charge carrier	-H	
(Retention Time Matching)	RT Tolerance	+/- 0.15 min	
	Mass score contribution	100	
	Isotope abundance score contribution	60	
	Isotope spacing score contribution	50	
Scoring	(Retention time score contribution)	100	
	Expected MS mass variation	2.0mDa + 5.6ppm	
	Expected MS isotope abundance variation	7.5%	
	Do not match if target score	<70	
Result Filters	Warn if the unobserved 2 nd ion's abundance is expected to be	>50	
	Do not match if the unobserved 2 nd ion's abundance is expected to be	>200	

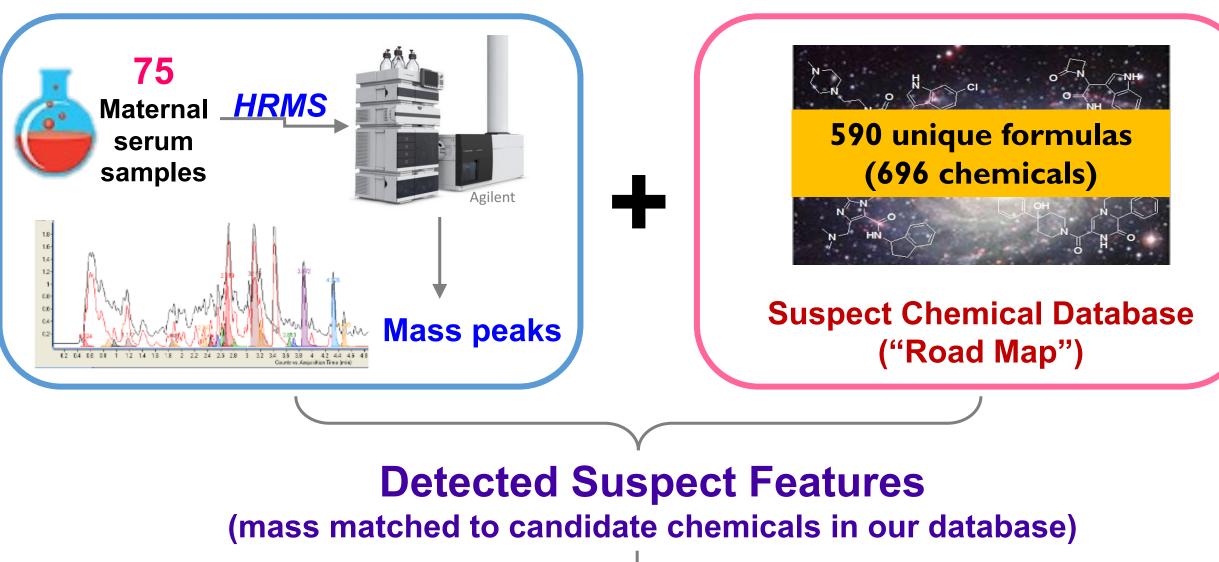

Initial study


In-House Database (696):

environmental phenols (bisphenols, parabens etc), pesticides, perfluorinated compounds, flame retardants, phthalate metabolites

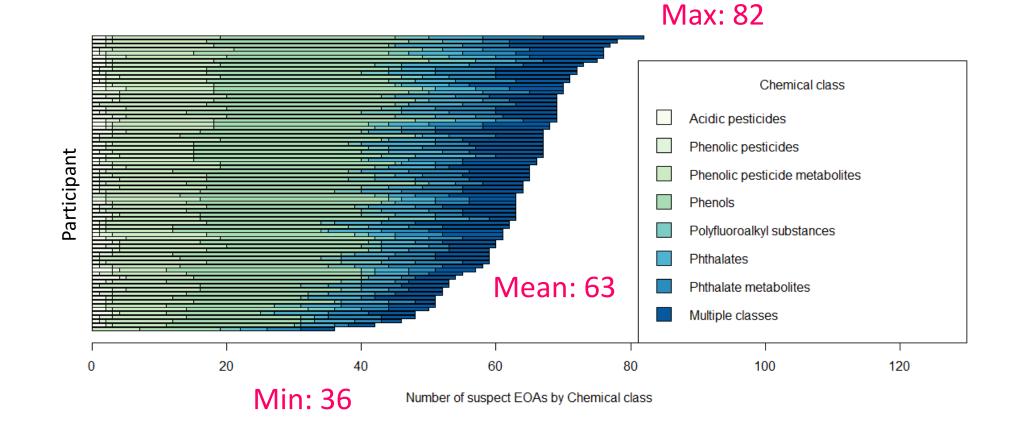
Suspect screening of EOAs in 75 maternal serum samples

Current study extends the database & sample size



Maternal serum collected at delivery

- Questionnaires at 2nd trimester (demographics & consumer product use)
- Medical records: birth outcomes


Study design

Priority Chemical Evaluation/ Confirmation/ Association Analysis with Birth Outcomes / Consumer Product Use

Results

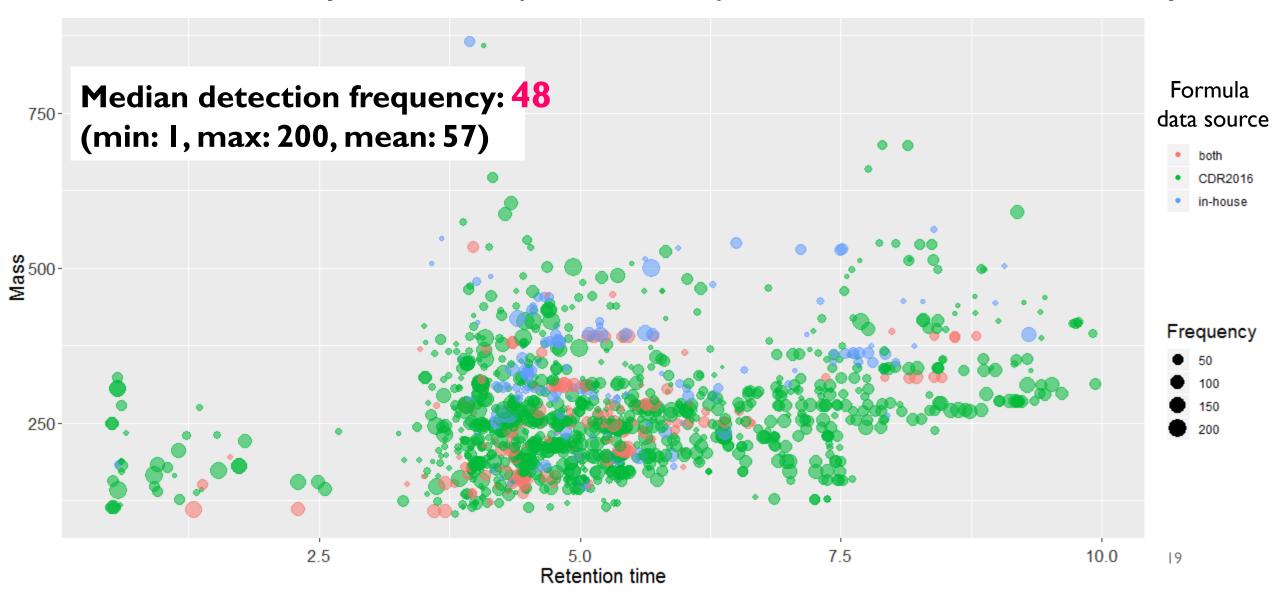
Number of suspect EOAs by chemical class (N=75)

Aim 1: Suspect EOAs with detection frequency (DF) \ge 80%, ranked by DF

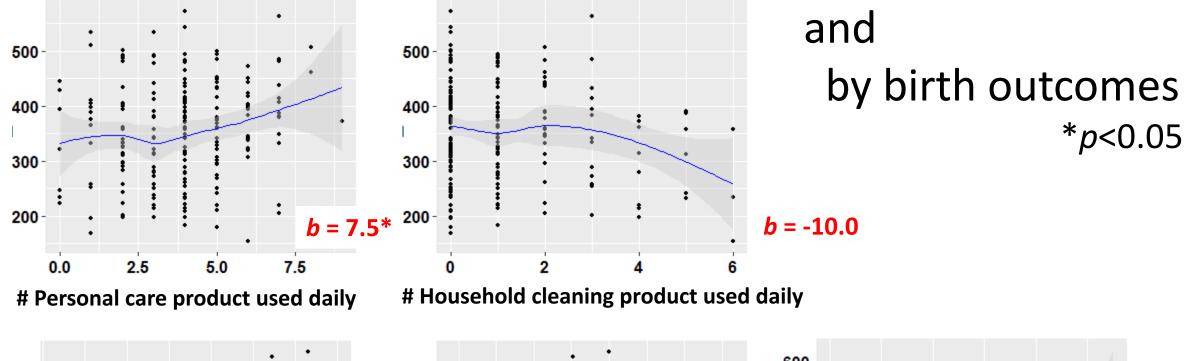
15 suspect EOAs (formulas) matched to 27 compounds

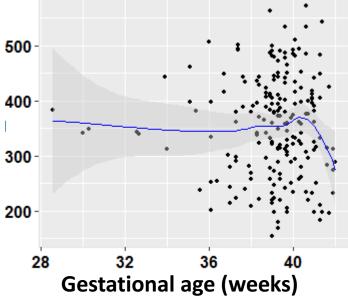
Suspects identified after FbF		Information on Matched EOAs			External	External information		
						Biomonito	red?	
Chemical formula	RT (mean)	DF	# isomers	Names	Chemical class	NHANES	CA ^a	HPV⁵
C8HF17O3S	5.502	75	1	Perfluorooctane sulfonic acid	Polyfluoroalkyl substances	V	V	
				2,4-bis(1,1-Dimethylethyl)phenol				
				2,6-bis(1,1-Dimethylethyl)phenol				
				4-Octylphenol				
C14H22O	6.719	74	4	4-tert-Octylphenol	Phenols	V	V	V
				Butyl decyl phthalate				
				Diheptyl phthalate				
C22H34O4	7.560	72	3	Diisoheptyl phthalate	Phthalates			
C10H14O2	4.029	70	1	4-Butoxyphenol	Phenols			
				2-Methylphenol				V
C7H8O	1.999	70	2	4-Methylphenol	Phenols			V
C8H8O3	1.931	66	Ov	ver half of the matched chemicals have not been biomonitored			√ √ √ √	V
C16H22O4	5.139	65	5	Monooctyl phthalate	Phthalate metabolites	ν		
C15H22O3	5.132	64	1	3,5-Di-tert-Butylsalicylic acid	Phenols			
				2-Isopropoxyphenol				
C9H12O2	4.553	64	2	4-Propoxyphenol	Phenols			
C11H14O2	5.129	63	1	Methyl eugenol	Phenols			
C12H17NO3	3.977	63	1	Promecarb metabolite	Phenolic pesticide metabolites			*
				, , ,	npounds with the same molecular form	nula (mass) but	differen	t
C16H22O4	4.773	63	5	structure (RT).				
C12H15NO4	1.119	61	1	Carbofuran metabolite	Phenolic pesticide metabolites			*
C16H26O2	6.153	61	1	Octylphenol monoethoxylate	Phenols			
C20H26O4	4.457	61	1	Dicyclohexyl phthalate (DCHP)	Phthalates		V	

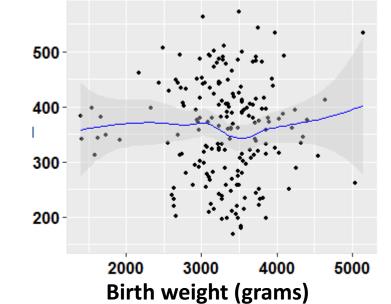
Abbreviations: EOA, environmental organic acid; DF, detection frequency; RT, retention time (in minutes); NHANES, National Health and Nutrition Examination Survey; HPV, high production volume.


Summary of the confirmed compounds, uses and available health hazard information from suspect screening of pregnant women (N=75).

	Chemical Name (CASRN)	Selected Chemical Uses from EPA's CPCat Database	Health Hazard Information	
	2,4-Di-tert-butylphenol (96-76-4)	Toys; Personal care products; Manufacturing	Estrogenic effects	
	3,5-Di-tert-butylsalicylic acid (19715-19-6)	Not available	No information	10-50 million pounds per year
	2,4-Dinitrophenol (51-28-5)	Cosmetics; Pesticides; Pharmaceuticals; Coloring agents	Cataract formation; Causing genetic defects; Damaging fertility and the fetus	EPA 2017 CDR
	Pyrocatechol (120-80-9)	Cosmetics; Food additives; Pesticides; Pharmaceuticals; Manufacturing	Possible human (Group 2B) carcinogen	
	2'-Hydroxyacetophenone (118-93-4)	Fragrances; Food additives; Pesticides; Pharmaceuticals; Manufacturing	No information	
	4-Hydroxycoumarin (1076-38-6)	Pharmaceuticals	No information	
	CPCat: Chemical and Product Cat	egories		


Condensed information based on the cassettes obtained from the U.S. EPA's Chemical and Product Categories (CPCat) database (<u>Dionisio et al. 2015</u>; <u>U.S. EPA</u> 2014).


Results from LC-QTOF/MS + Suspect Screening


Overview of I220 suspect features (mass matches) detected across 200 serum samples

Number of suspect features by # of daily consumer product use

20

Summary

- Suspect Screening a viable method to more holistically characterize a broad spectrum of environmental chemicals and to identify novel, ubiquitously present compounds and thus prioritize chemicals for targeted method development Strengths/Limitations
- Relatively large sample size for suspect screening analysis
- Sparse data (lower sensitivity compared to the targeted method)
- Needing further confirmation with reference standards
- Restricted chemical space (EOA library_

Ongoing work/Future directions

- Screening for broader array of chemicals ~3,000
- Develop computational techniques for workflow/chemical analysis
- Additional biological samples

UCSF

Acknowledgements

Tracey J.Woodruff Marina Sirota

Rachel Morello-Frosch Roy R. Gerona Jackie M. Schwartz Thomas Lin

All CiOB2 study participants

Naomi Stotland Marya Zlatnick Erin DeMicco Brittany Tadwilliams Cheryl Godwin De Medina Lizbeth Cabrera Junesoo Park (DTSC) Miaomiao Wang (DTSC) Juliet Kinyua (DTSC) Ting Jiang (DTSC)

Vincent Bessonneau (Silent Spring) Jon Sobus (US EPA) Jarod Grossman (Agilent) Antony Williams (US EPA) Seth Newton (US EPA)

Sirota Lab

Funding

U.S. Environmental Protection Agency (RD-83543301, RD-83564301) National Institute of Environmental Health Sciences (P01ES022841, R01ES027051) March of Dimes Prematurity Research Center at Stanford Preterm Birth Initiative at UCSF

AolinW@gmail.com

https://prhe.ucsf.edu/

Pregnancy Exposures to Environmental Chemicals Children's Center

Preterm Birth Initiative

Photo source: pulseheadlines.com

Thank you!

Suspect Screening Blog Post: prheucsf.blog (Eng/Chinese)

EHP paper: EHP2920 (covered by the NY Times)

PRHE is hiring postdocs!

Contact: PRHE@ucsf.edu

Program on Reproductive Health and the Environment