Analytical Issues with PFAS

December 20, 2016 Collaborative on Health end the Environment (CHE) Webinar

Nancy C. Rothman, Ph.D.

New Environmental Horizons, Inc.

34 Pheasant Run Drive, Skillman, NJ 08558 Phone: 908-874-5686

email: nrothman_neh@comcast.net

Analysis of PFAS

USEPA Method 537, Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), version 1.1 (September 2009)

- Method 537 is currently the only quantitative published method
- EPA in process of developing method(s) for other matrices and to improve accuracy of measurements
- Beginning in January 2017, Interstate Technology & Regulatory Council (ITRC) will be a developing guidance document on PFAS

SGS

PER AND POLYFLUORINATED COMPOUNDS (PFAS/PFC)

PFCAs incl. PFOA

n=4, PFHxA; n=5, PFHpA; n=6. PFOA: n=7, PFNA; n=8, PFDA; n=9, PFUnDA; n=10. PFDoDA:

$$F = \begin{cases} F & O \\ F & F \end{cases}$$

n=3, 4:2 FTS n=5, 6:2 FTS n=7.8:2 FTS

PFPA/PFPiA

 $\begin{array}{c} R_1 = C_6 F_{13} \\ R_2 = C_6 F_{13} \end{array} \big\} \cdot 6:6 \, PFPiA \\$

n=3, PFBS n=5, PFHxS n=7, PFOS

PAP, DiPAP

$$\begin{array}{c} R_1 - O \\ R_2 - O \\ \end{array} \\ \begin{array}{c} O \\ R_1 - C_2 H_4 C_9 F_{17} \\ R_2 - C_2 H_4 C_9 F_{17} \\ \end{array} \\ \begin{array}{c} 6:2 \text{ diPAP} \\ R_2 - C_2 H_4 C_9 F_{13} \\ R_2 - C_2 H_4 C_9 F_{13} \\ \end{array} \\ \begin{array}{c} 8:2 \text{ diPAP} \\ \end{array} \\ \begin{array}{c} R_1 - C_2 H_4 C_9 F_{13} \\ R_2 - H \end{array} \\ \begin{array}{c} 6:2 \text{ PAP} \\ R_2 - H \end{array} \\ \begin{array}{c} R_1 - C_2 H_4 C_9 F_{17} \\ R_2 - H \end{array} \\ \begin{array}{c} 8:2 \text{ PAP} \\ \end{array}$$

Poly- or perfluorinated alkyl substances (PFAS) or Perfluorocarbons(PFC) – General term for all chemicals formed from carbon chains with fluorine substituting some/all of the hydrogens on the chain

- C-F bond very strong
- Unique properties repel water and oil, surfactant, stable
- Diverse and complex chemistries based on product use
- Precursors FTS (Fluorotelomer Sulfonate), PAP (Polyfluorinated Alkyl Phosphate Esters), PFPA (Polyfluorinated phosphonic acid), FTOH (Fluorotelomer alcohol) can all degrade to PFOA

Major Factors Affecting Analytical Accuracy

- Background Contamination
- Not quantitating Branched Isomers along with straight-chain Isomers
- Matrix Interferences causing Enhancement and/or Suppression of Analytical Signal
- Recovery Correction through Isotope Dilution is not routinely performed

LINEAR VS. BRANCHED ISOMERS

- Eleven known isomers of PFOS
- 499>80 and 499>99 transitions have different relative response factors for the linear and the branched isomers.
- Quantitative biases possible depending on standard type and MRM transitions used for quantitation
- Distribution/half lives in tissue are different between linear and branched
- Speciation is more important in research applications.
 Contaminant analysis issues centered around accuracy of quantitation

Riddell, N. et. al, Environ Sci. Technol. 2009 (43) 7902-7908.

© SGS SA 2016 ALL RIGHTS RESERVED

Analytical Recommendations

- Validate method of extraction and analysis for each matrix
- Use Isotope Dilution Technique plus recoverycorrection for analysis
- Extend List of Analytes to include C4- or C5-alkly acids & Precursors
- Modify LC/MS/MS to eliminate PFCs and minimize PFC background in sampling and analysis
- Include Branched Isomers in Reporting
- Perform rigorous QC: e.g., Field Duplicates, Blank Spikes, Blanks analyzed between each sample