Does Early BPA Exposure Cause Hyperactivity in Children?

JOHANNA ROCHESTER, PHD

THE ENDOCRINE DISRUPTION EXCHANGE MAY 16, 2018

JOTEDX@TEDX.COM

Prenatal Origins of Disease

Chemical exposure in the womb → Disease later in life

What happens in the womb lasts a lifetime

https://www.dohadfordoctors.com/what-is-dohad/

- Humans—difficult to study
- Animals—difficult to relate to human health

* @ ARAF-1

<u>Neurodevelopment</u>

Attention Deficit/Hyperactivity Disorder

- Hyperactivity, Inattention
- 20% in boys 14-17 years old
- 15% in boys 7% in girls (CDC 2013)
- Costs are high:
 - Estimated at \$36-\$52 billion per year (cancer is \$87 billion)
- Gene-environment interaction?

ADHD and Early Chemical Exposure

Extensive literature searches

- o Disease/symptom
- o Prenatal
- o Human/rodent
- Environmental exposure

Studies Linking ADHD to Early Chemical Exposure

BPA and Human Health

BPA is a well known endocrine disruptor

o Estrogen, androgen, thyroid, insulin

- Present in can liners, hard plastics (#7), thermal receipt paper.
- Human health effects (Rochester 2013)
 - Reproduction
 - o Thyroid

- o Metabolic Syndrome (obesity, T2D, cardiovascular diseases)
- Immune effects
- Neurodevelopment

OHAT Systematic Review Framework

- Office of Health Assessment and Translation (National Toxicology Program, NIEHS)
- 7 Step SR framework
- Hazard ID conclusion
- Can be used with or without meta-analysis
- Integrates animal and human evidence

Prenatal exposure to bisphenol A and hyperactivity in children: a systematic review and meta-analysis

Johanna R. Rochester^{a,*}, Ashley L. Bolden^a, Carol F. Kwiatkowski^{a,b}

^a The Endocrine Disruption Exchange, TEDX, Paonia, CO, United States

^b Department of Integrative Physiology, University of Colorado, Boulder, CO, United States

Step 1– Problem Formulation

9

• Does early BPA exposure cause hyperactivity in humans?

Step 2--Search and Screen Studies

Refid: 145, Rat hyperactivity by bisphenol A, but not by its derivatives, 3-hydroxybisphenol A or bisphenol A 3,4-quinone M. Ishido, Y. Masuo, M. Terasaki, M. Morita

Reference Label(s):

Add labels here

Detoxification in the central nervous system is largely unknown. The mechanism of neurotoxicity of bisphenol A, a toxic environmental chemical remains obscure. We examined the effects of bisphenol A, and its derivatives, 3-hydroxybisphenol A and bisphenol A 3,4-quinone on rat behavior as possible metabolites of bisphenol A. A single intracisternal administration of bisphenol A (20 mug equivalent to 87 nmol) into 5-day-old male Wistar rats caused significant hyperactivity at 4-5 weeks of age. It was about 1.3 fold more active in the nocturnal phase than control rats. However, neither 3-hydroxybisphenol A nor bisphenol A 3,4-quinone at the same amount (87 nmol) increased the spontaneous motor activity. Gas chromatographic-mass spectrometric (GC-MS) analyses of the treated brain revealed that 7% of the parent chemical resided in the brain at 8 weeks of age, but its derivatives were not found. This suggested a difference in metabolic turnover of these compounds or a difference in their stabilities. We conclude that bisphenol A per se caused hyperactivity in the rat, eliminating the possibility that possible metabolic forms of bisphenol A, 3-hydroxybisphenol A and bisphenol A

Actio

Step 3– Data Extraction

12

- Rodent models for hyperactivity
- Human surveys

Step 4: "Risk of Bias" (Study Quality)

		/				/ /		/		10			1.					
	/	/		/	/ /	ent?				CUPS!	3.		Study	ats	nise	5	2	roups
						essme	nent?		14	ener	of iable	ar 1123	5055 /	suble of	opron	251051	ne narts.	ossel and
					/ /.:	8550	551. 18	§?.	s ^{ac} z	we nut	the var Holl	stess icala	Inar	e stute ale	nill?		articity of a	cifieo
			/	/ /	-OSHT	2e 353	Jomit	x ade	ilat	3000	ithin oact this	dent	nd hung	Nº NOCO	orsin	indet	Nº ese S	. spet of
					erp	rcont	uranu	Inent	sim	alysis dro	Nim night	onsi	el a duni	and and	andle	ors bit tatus	105 253 25UTC	Spreig? icalion
				/ / /	in in	ou /3	rely ex	ear hers?	Still. A	and and all	a' that andit	arson	TONK 2	Stur Stur 10	M Ge	5 Jre Zin	of ene on	e retter zatist
Leal			/ /	Bent	, ent	adeout	onor	eat ate	Siller	ind in rule	sure raice	ch pe ud	18 Millio	Athe rate	Te 27	POS neve	hap along to	ee se?
A P		/.		contra	contra	nent	UDCating ret	ectio	, and conto	hers et	rimet	sed the st	on tro ions	wittion	NICO'NOT	sund! and	rentionthe	ropi dato
Auth	/	THE		چ (ک	* / 2	atti	all ged	ellin	JU Jant ge	arcinder	pe 2. the	ad ^{to}	still nethis ne	3 ² 2. 1	e entio cos	ato vallo er	20° 0'0' 0'	Pr the
rudy	TUD	* /;	e an	Car N	N251	Nast	oncer repo	oid the	not idre i	inte Nere r	OUP Nere ind	cid vor	e ^{co} Nost	OUP Nere	ent vere	ine rette	201 N35° C	alle
/ 5	~~	$ \subset $					~~~			· / ٦· ٩	~~~ v	\bigwedge^{\vee}		;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>	(
Forgueon 2012 [CC]*	Animal		Key Ques	stions			nla											
rerguson 2012 [00]	Animal	-	1 ++	++	+	Ŧ	n/a	+	+	++	++	+	++	+	+	++	++	
Horodia 2016 [84]*	Animal	-	1 ++		+	NP	n/a	т 1		11	NP	т _	NP	TT	т +	+	11	
Hicks 2016 [85]	Animal		1 ++		+		n/a	+ +		11		т 1		+	+	++	11	
Kiguchi 2007 [68]	Animal	-	1 ++	11	+		n/a	+	-	++	++	+	+	++	n/a	++	+	
Kiguchi 2007 [60]	Δnimal	-	1 ++	++	+	_	n/a	+	_	++	++	+	+	++	n/a	++	+	
Komada 2014 [31]*	Animal	-	1 ++	+	NR	+	n/a	NR	-	++	+	+	+	+	n/a	++	++	
Kundakovic 2013 [81]*	Animal	-	1 ++	++	+	+	n/a	+	-	++	++	+	+	+	n/a	++	++	
Masuo 2004 [70]	Animal		1 ++	++		-	n/a	+	-	++	-	+	+	++	n/a	++		
Masuo 2004 [34]*	Animal		1 ++	++		-	n/a	+	-	++	-	+	+	++	n/a	++		
Nagao 2014 [78]*	Animal		1 ++	+	NR	+	n/a	NR	-	-	+	+	+	+	n/a	++	NR	
Nakamura 2012 [77]*	Animal	1	1 ++	++	NR	+	n/a	+	-	++	-	+	+	+	+	++	NR	
Negishi 2003 [79]	Animal	1	1 ++	++	+	+	n/a	+	NR	++	NR	+	++	+	+	+	NR	
Negishi 2004 [71]	Animal	-	1 ++	++	+	-	n/a	+	-	++	-	+	++	++	+	+		
Rebuli 2015 [86]*	Animal	-	1 ++	++	+	++	n/a	+	++	++	++	+	+	++	+	+	++	
Stump 2010 [75]*	Animal	-	1 ++	++	++	+	n/a	+	-	++	-	+	+	+	+	++	NR	
Tian 2010 [38]	Animal		1 +	++	+	+	n/a	NR	-	++	-	+	NR	+	n/a	++	NR	
Van Esterik 2014 [80]	Animal	1	1 ++	++		+	n/a	+	+	++	+	+	++	+	n/a	+		
Wolstenholme 2013 [72]	Animal	1	1 ++	++	+		n/a	+	-	++		+	++	++	n/a	++	++	
Adriani 2003 [64]	Animal	2	<mark>2</mark> +	++	NR	+	n/a	NR	-	++	-	+	NR	+	n/a	++	NR	
Anderson 2013 [65]	Animal	ź	2 NR	++	+	+	n/a	++	+	++	++	+	+	+	+	++	+	
Farabollini 1999 [74]	Animal	2	2 +	++	+	+	n/a	NR	-	++	-	+	NR	NR	n/a	++	NR	
Ishido 2004 [32]*	Animal	2	2 ++	++		-	n/a			++		+	++	+	n/a	++	NR	
Ishido 2005 [33]	Animal	2	2 ++	++		-	n/a			++		+	++	+	n/a	+	NR	
Ishido 2007 [37]	Animal	1	2 ++	++		-	n/a			+		+	++	+	n/a	++	NR	
Ishido 2011 [67]	Animal	1	2 ++	++		-	n/a			++		+	++	+	n/a	++	NR	
Matsuda 2012 [40]	Animal	1	2 ++	++	NR	+	n/a	NR	-	+	-	+	NR	NR	n/a	++	NR	
Xu 2007 [76]*	Animal	- 2	2 +	++	NR	+	n/a	NR	-	++	-	+	NR	NR	n/a	+	NR	
Zhou 2011 [73]	Animal	2	2 ++	++	-	+	n/a	NR	-	++	-	+	NR	+	n/a	++	NR	
Braun 2011 [29]*	Human		+	++	n/a	n/a	+	++	+	n/a	n/a	+	++	+	++	+	+	
Casas 2015 [27]*	Human		1 ++	++	n/a	n/a	++	++	++	n/a	n/a	+	+	++	-	++	++	
Harley 2013 [30]*	Human		+	++	n/a	n/a	++	++	+	n/a	n/a	+	++	+	-	++	+	

Step 4: "Risk of Bias"

Meta-Analysis (CMA Software)

Study name	Statistics for	each study	Hedge	s's g and 9	5% C
	Hedges's g	p-Value			
Ferguson 2012 [66], F	0.054	0.891			
Nakamura 2012 [77], F#	-0.566	0.074		●	
Nakamura 2012 [77], F*	-0.151	0.631			
Stump 2010 [75], F	0.044	0.877			
Komada 2014 [31], F	0.295	0.316		- - -	
Nagao 2014 [78], F	0.164	0.803		 ●	
Xu 2007 [76], F	-0.092	0.842			
Kundakovic 2013 [81], F	-0.393	0.358	— —	→	
Rebuli 2015 [86], FJ	-0.228	0.564		_ _	
Rebuli 2015 [86], FA	-0.325	0.413	_	- ● -	
Hass 2016 [83], F	0.330	0.280		+•-	
Heredia 2016 [84], F	-0.219	0.610	_		
	-0.068	0.514		•	
Ferguson 2012 [66], M	0.503	0.209			_
lshido 2004 [32], M	0.708	0.200			
Masuo 2004 [34], M	0.892	0.102		+•	
Nakamura 2012 [77], M#	-0.326	0.307	-	-• -	
Nakamura 2012 [77], M*	-0.055	0.860			
Stump 2010 [75], M	0.048	0.865			
Komada 2014 [31], M	0.404	0.181		+•	
Nagao 2014 [78], M	-0.018	0.979	<u> </u>	 	_
Xu 2007 [76], M	0.553	0.240			
Kundakovic 2013 [81], M	1.155	0.011		<u> </u>	•
Rebuli 2015 [86], MJ	-0.149	0.706	-	— 	
Rebuli 2015 [86], MA	0.145	0.713		—• —	
Hass 2016 [83], M	0.427	0.164		+•	
	0.243	0.020			

Males

Females

4.00

Step 1: Determine initial confidence in the Body of Evidence		Step 2: Adjust for factors decreasi confidence in the Body of Evidence	Step 3: Adjust for factors increasing confidence in the Body of Evidence			
ontrolled	exposure	Risk of bias	-	Large Mag Effect	nitude of	
Exposure prior to outcome		Unexplained Inconsistency	Dose Response			
Individual outcome data		Indirectness	Residual Co	onfounding		
Comparison group		Imprecision	Consistency			
		Publication bias		Other		
Overall fidence in Body of vidence	Step 1 Tota +4	al Step 2 Total -1	Ste	ep 3 Total +1	High (++++)	

Ste	Step 5: Determine the confidence in the Body of Evidence for Human Studies									
	Step 1: Determine initial confidence in the Body of Evidence			Step 2: Adjust for factors decreasin confidence in th Body of Evidenc	or ng le e	Step 3: Adjust for factors increasing confidence in the Body of Evidence				
	Controlled exposure			sk of bias		Large Magnitude of Effect				
	Exposure p outcome	orior to	Ur In	nexplained consistency		Dose Response				
	Individual outcome data 🕈			directness		Residual Confounding				
	Comparison group			precision		Consistency				
				Iblication bias		Other				
Con the E	Overall Ifidence in Body of Vidence	Step 1 Tota +3	1	Step 2 Total -1	Ste	ep 3 Total +1	Moderate (+++)			

Step 6- Translate Confidence Rating to Evidence of Health Effects

- Animals: A 'high' rating (from Step 5) and a significant summary measure from the meta-analysis = *high* level of evidence.
- Humans: A 'moderate' rating and a significant positive effect = *moderate* level of evidence.

		Step 7: Identification of Hazard ID conclusion										
Health dies	high	"known"	"known"	"known"								
ence for man Stu	moderate	"suspected"	"presumed"	"presumed"								
of Evide s in Hur	low	"not classifiable"	"suspected"	"presumed"								
evel		low	moderate	high								

Level of Evidence for Health Effects in Animal Studies

Conclusions

20

- SR indicates a **presumed hazard to humans** of early BPA exposure on hyperactivity.
- Heterogeneity: males vs. females
- Data gaps: Timing of exposures
- Risk of Bias

Recommendations/Further Work

- Dose and Risk Assessments
- Pregnant women should avoid BPA
 - Recommended by American College of Obstetricians and Gynecologists
 - BPA is present in: canned food, plastic packaging, thermal receipts

BPA Research

- ADHD/Hyperactivity: sensitive endpoint
- So much BPA research!!

BPA Regulation

Partners in Science

Funders: The Arkansas Community Foundation, the Winslow Foundation, the Cornell Douglas Foundation, and the Wallace Genetic Foundation

Ashley Bolden

Carol Kwiatkowski (Executive Director)

Christina Ribbens