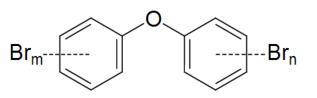
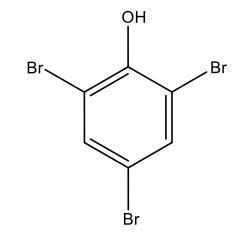
Associations Between Brominated Flame Retardants and Thyroid Hormones in Human Placental Tissues: Sex-Specific Differences?

<u>Heather M. Stapleton</u>, Chris Leonetti, Kate Hoffman, Craig Butt, Marie Lynn Miranda

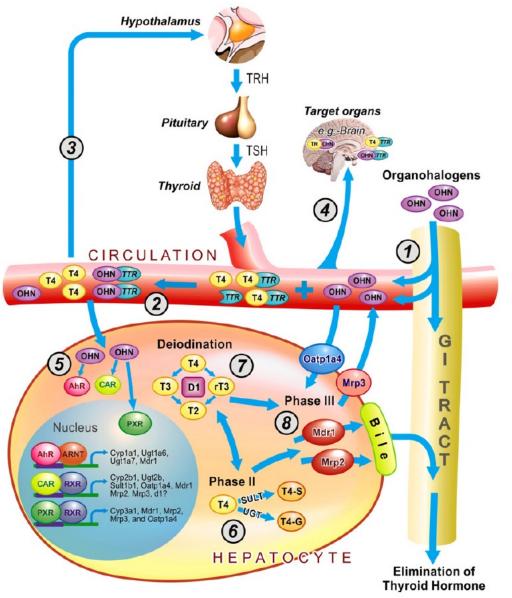
Duke University Nicholas School of the Environment Durham, NC

Email: <u>heather.stapleton@duke.edu</u>


Brominated Flame Retardants (BFRs)

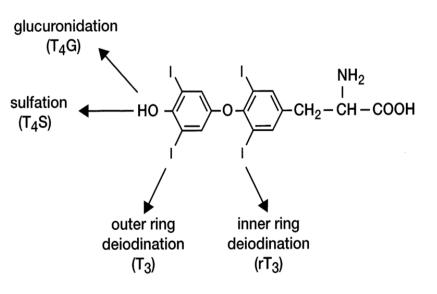

PBDEs:

- Three commercial mixtures (additive):
 - PentaBDE: PUF cushioning
 - OctaBDE: Acrylonitrile and butadiene styrene (electronics)
 - DecaBDE: Polypropylene and HIPS (electronics, automobiles, housing materials)
- Banned in EU in 2002 and added to Stockholm Convention in 2009
 - Penta and Octa voluntarily phased out in US in 2004
 - Deca phased out in US in 2014
- Predominant congeners in environment and human tissue:
 - BDE-47, -99, -100, -153, -154, and -209

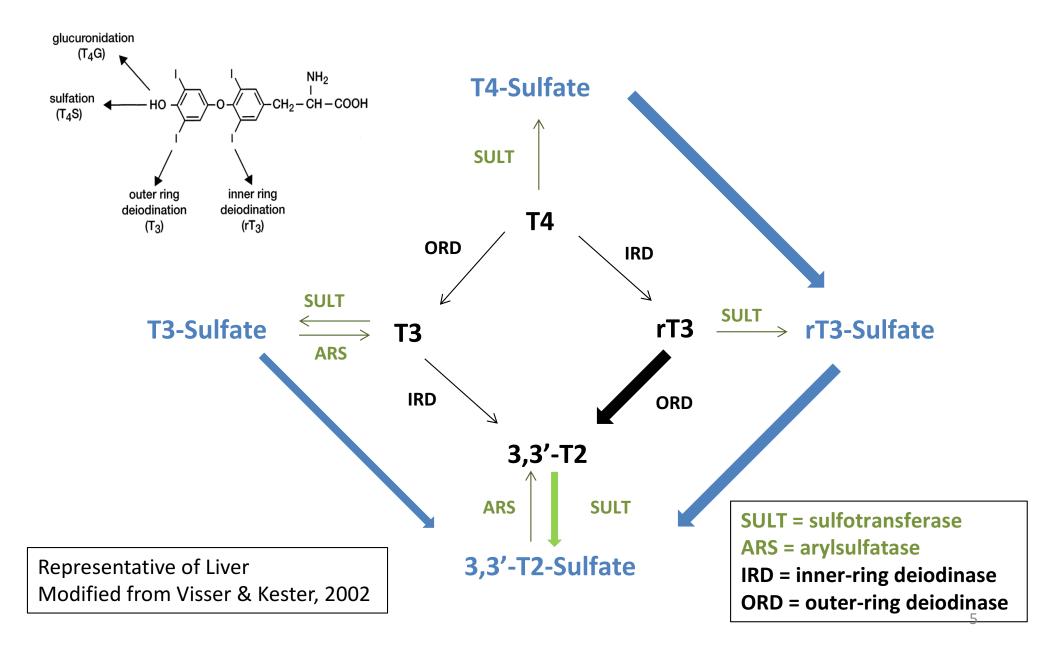

2,4,6-Tribromophenol:

- Used as a
 - Fungicide
 - Reactive FR
 - Intermediate in the production of other BFRs
 - Metabolites of PBDEs
- Natural sources from marine algae
- 2,4,6-TBP measured in marine wildlife, however very few human biomonitoring and toxicology studies

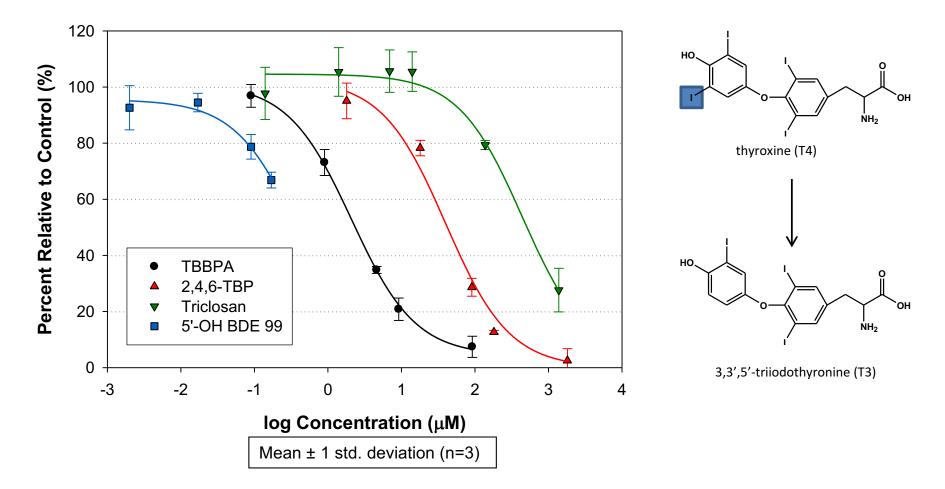
Modes of Action Affecting Thyroid Regulation



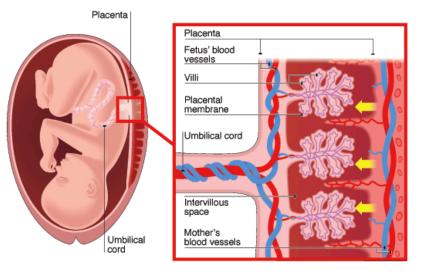
- 2. PBDE metabolites displace T4 from serum transporters (Meerts et al., 2000);
- Transporters deliver PBDEs or metabolites to brain where agonism/antagonism with nuclear receptors may occur;
- 5. Upregulation of xenobiotic metabolizing enzymes (XMEs) (Szabo et al 2009)
- 6. XMEs conjugate T4; increased or decreased clearance of THs (Butt et al., in 2013);
- 7. Disruption of Deiodinase Activity by PBDE metabolites (Butt et al., 2011)

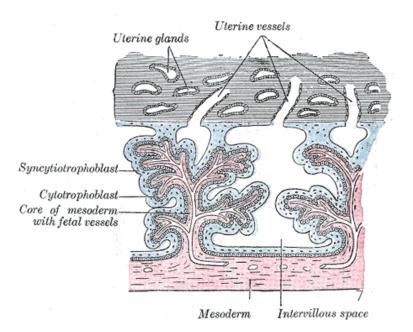

(From Kodavanti and Curras-Collazo, 2010)

Thyroid Hormone Metabolism


- Bioactivated/inactivated in peripheral tissues
- Deiodinase (DI)
 - Microsomal, membrane-bound
 - Three isoforms with different catalytic capacities and tissue localization
 - IRD and/or ORD
 - DIO3 predominantly expressed in placenta
- Sulfotransferase (SULT)
 - Cytosolic
 - Class of phase II metabolism enzymes
 - Increase polarity/hydrophilicity for excretion
 - Bioactivate/inactivate endogenous compounds/xenobiotics
 - Multiple isoforms and broad substrate specificity
 - SULTs inactivate THs

Integrated TH Metabolism

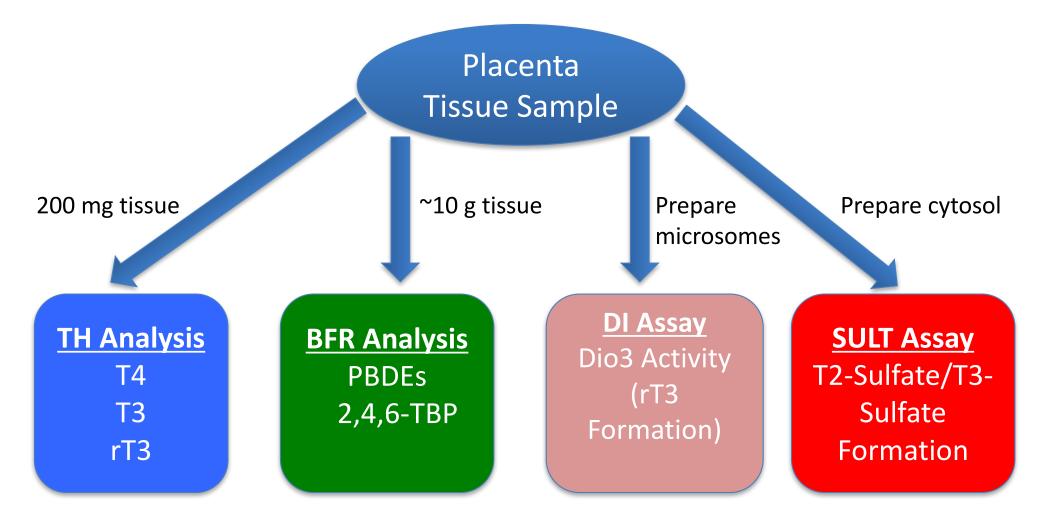

Inhibition of Thyroxine Deiodination by Flame Retardants (Butt et al., 2011)



In Vitro Experiments Conducted with Pooled Human Liver Microsomal Samples

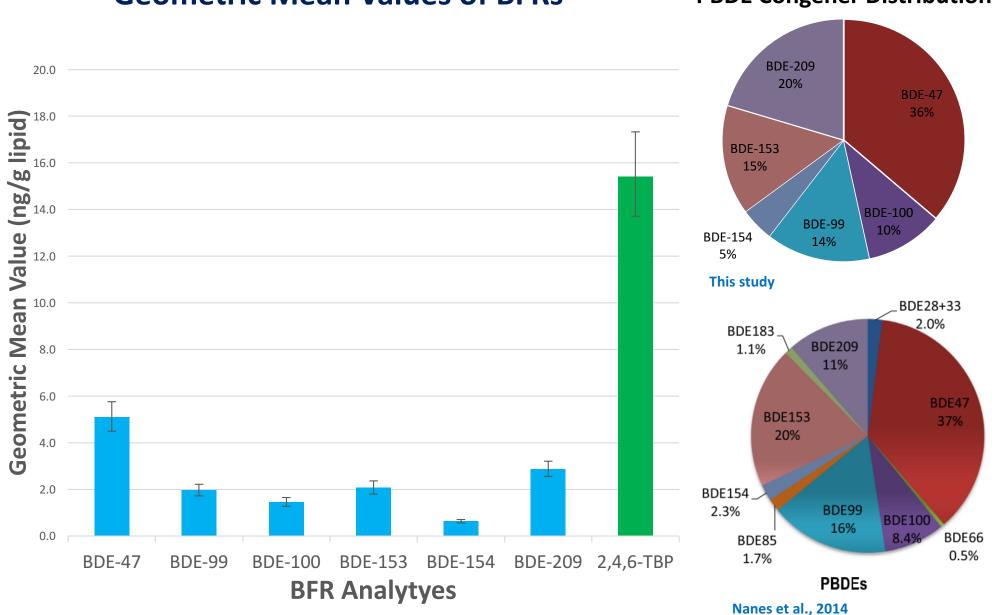
Human Placenta

- Fetomaternal organ that connects the developing fetus to the uterine wall
- Disc-shaped, 22 cm long, 2.5 cm thick, 500 grams, thickest at the center
- Facilitates nutrient uptake, thermoregulation of the fetus, waste elimination, and gas exchange via the mother's blood supply, and produce hormones to support pregnancy
- Fetal TH production begins at 14-16 weeks gestation
 - THs are critical for fetal neurodevelopment
 - DIO Type 3 helps regulate T3 delivery and recirculate iodine supplies


Could Exposure to BFRs Affect Thyroid Function in Human Placental Tissues?

Study Cohort

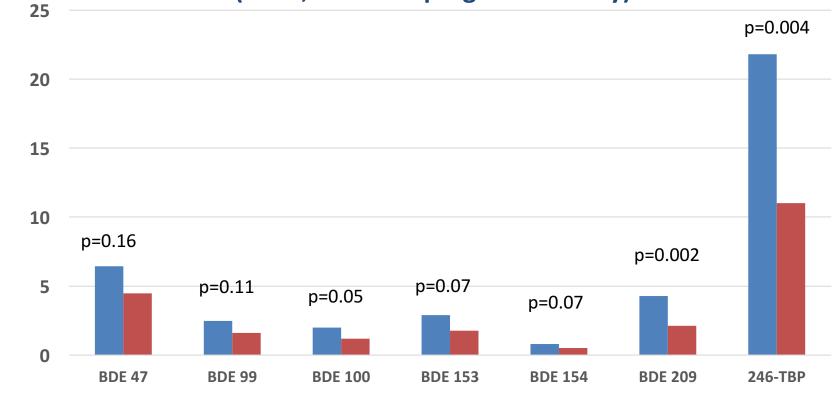
- 102 placenta tissue subsamples collected at delivery
- Collected from Duke University Medical Center (2010-2011)
- Cohort is part of SCEDDBO/Healthy Pregnancy Healthy Baby Study – "determine how the interaction of environmental, social, and host factors contributes to disparities in birth outcomes between African-American and white women in North Carolina"
- Demographics:
 - 68% non-Hispanic black
 - Age range: 18-40 years old
 - 9.3% with private health insurance



Experimental Approach

Thyroid hormone levels (ng/g ww) and BFR concentrations (ng/g lipid) measured in term placenta tissue

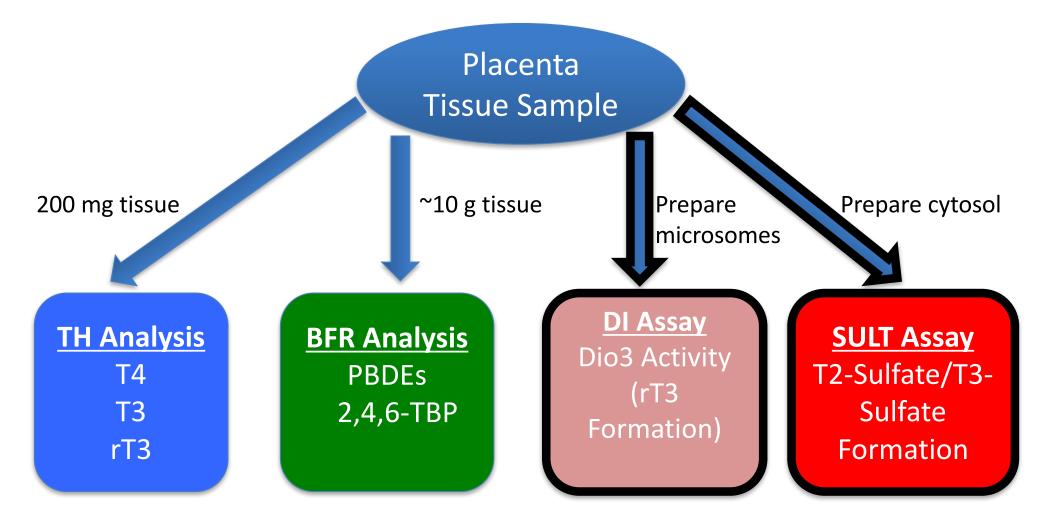
Variable	MDL	Detection Frequency (%)	Geometric Mean	Min	Max	
Thyroid hormones (n=102)						
Τ4	0.002	100	27.8	11.8	53.6	
Т3	0.002	100	0.38	0.10	0.90	
rT3	0.002	100	2.66	0.73	7.59	
PBDEs (n=102)						
BDE-47	0.07	91.2	5.09	0.12	141	
BDE-99	0.07	68.6	1.95	0.09	223	
BDE-100	0.02	88.2	1.45	0.03	50.1	
BDE-153	0.01	93.1	2.06	0.02	513	
BDE-154	0.01	83.3	0.63	0.01	20.2	
BDE-209	0.17	52.9	2.86	0.18	50.4	
ΣPBDEs			17.6	0.54	528	
Phenolic compound (n=102)						
2,4,6-TBP	0.05	100	15.4	1.31	316	
ΣBFRs			37.3	2.18	568 ₁₁	

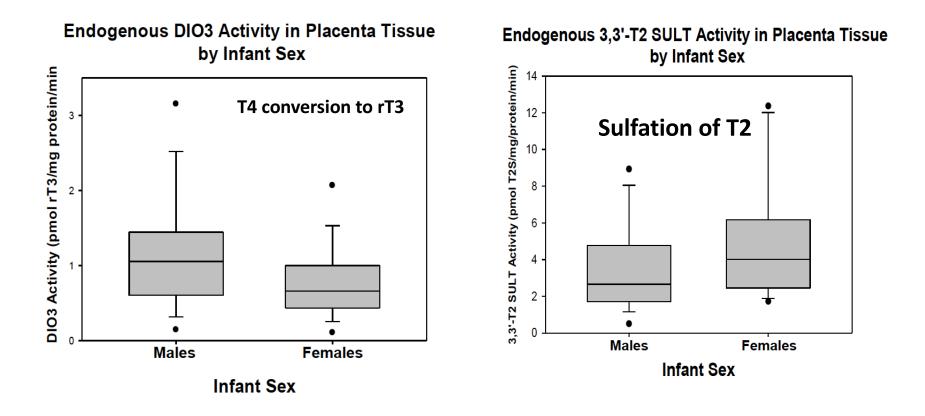

Geometric Mean Values of BFRs

PBDE Congener Distribution

Spearman correlation matrix for BFRs (ng/g lipid)												
Analyte	BDE-47	BDE-99	BDE-100	BDE-153	BDE-154	BDE-209	2,4,6-TBP	ΣPBDEs	ΣBFRs			
BDE-47	1.00	0.48#	0.88#	0.58#	0.61#	0.49#	0.50#	0.84#	0.73#			
BDE-99		1.00	0.52#	0.43#	0.52#	0.60#	0.66#	0.68#	0.72#			
BDE-100			1.00	0.71#	0.71#	0.50#	0.48#	0.89#	0.77#			
BDE-153				1.00	0.71#	0.50#	0.38#	0.77#	0.66#			
BDE-154					1.00	0.54#	0.50#	0.77#	0.72#			
BDE-209						1.00	0.58#	0.73#	0.72#			
2,4,6-TBP							1.00	0.58#	0.85#			
ΣPBDEs								1.00	0.89#			
ΣBFRs									1.00			
[#] p<0.001												

Geomean BFR Placental Levels by Infant Sex

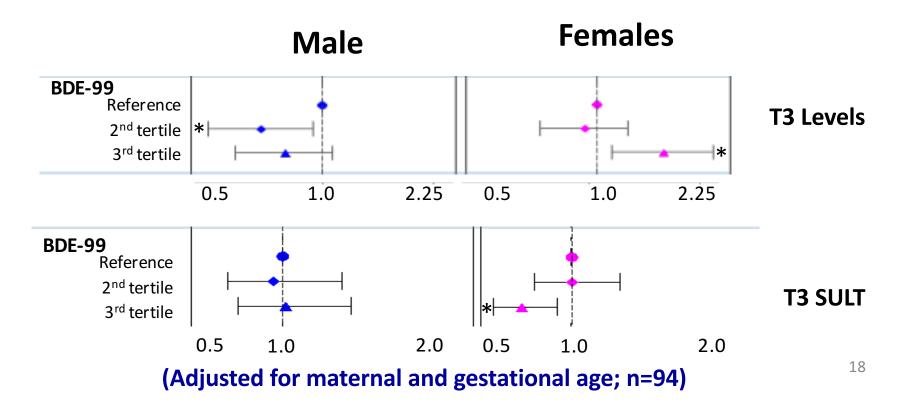

(n=94; full term pregnancies only)


Males Females

Concentration (ng/g lipid)

Experimental Approach

Enzyme Activities by Infant Sex


- DIO3 Activity Significantly Higher in Placental Samples from Males (1.8 X on average; p<0.01)
- T2 Sulfation Significantly Higher in Placental Samples from Females (1.5 X on average; p<0.05)

Spearman Correlation Analyses (n=94)

Spearman Correlation Coefficients by Infant Sex															
		BDE-47	BDE-99	BDE- 100	BDE- 153	BDE- 154	BDE- 209	2,4,6- TBP	ΣBFR	ΣBDE	тз	rT3	T4	DI	T2S
	Т3	-0.07	-0.21	-0.16	-0.03	-0.13	-0.10	-0.18	-0.22	-0.16	1.00				
	rT3	0.02	-0.34*	0.01	0.13	-0.04	-0.35*	-0.02	-0.13	-0.11	0.14	1.00			
Males	T4	-0.14	-0.21	-0.21	0.04	-0.07	-0.15	-0.11	-0.16	-0.15	0.53*	0.35*	1.00		
(n=48)	DI	0.03	0.16	0.15	0.04	-0.05	-0.02	0.00	0.05	0.09	-0.05	0.05	-0.27	1.00	
	T2S	0.02	-0.14	0.07	-0.01	0.02	-0.14	-0.02	-0.05	-0.01	-0.13	0.29*	-0.15	0.11	1.00
	T3S	0.29*	0.03	0.26#	0.27#	0.16	0.00	-0.11	-0.02	0.25#	-0.15	0.10	-0.05	0.17	0.29
	Т3	0.22	0.33*	0.19	0.23	0.08	0.17	0.36*	0.35*	0.25#	1.00				
	rT3	-0.12	-0.34*	-0.08	-0.10	-0.07	-0.05	-0.14	-0.13	-0.19	-0.16	1.00			
Females	T4	0.08	-0.07	-0.02	-0.03	-0.06	0.06	0.06	0.10	0.03	0.45*	0.24	1.00		
(n=46)	DI	0.10	0.00	0.18	0.11	0.24#	0.22	0.02	0.08	0.09	-0.10	0.23	0.02	1.00	
	T2S	0.11	-0.06	0.05	0.13	0.11	-0.10	-0.11	0.02	0.13	-0.19	-0.08	-0.12	-0.16	1.00
	T3S	0.08	-0.25#	0.11	0.15	0.15	-0.02	0.02	0.05	0.05	-0.07	-0.06	0.05	0.17	0.19

Associations with Thyroid Hormones

- Spearman correlations among PBDEs and thyroid hormones revealed:
 - T3 positively correlated with BDEs in females (BDE 99 r_s= 0.33)
 - T3 negatively correlated with BDEs in males

Mechanistic Pathways?

Observation:

 Higher BDE-99 exposure in placental tissues from infant females associated with higher T3, lower rT3, lower DIO3 and lower T3 SULT

Hypothesis:

- BDE-99/OH-BDEs inhibit DIO3 leading to lower rT3 (males and females)
- BDE-99/OH-BDEs inhibit SULT leading to higher T3 (females only?)

<u>Why BDE-99</u>?

In *in vitro* studies, BDE-99 was active, BDE-47 was not Human glial cells for DIO2 activity (Roberts et al. 2015) BeWO cells for T2 & T3 SULT activity (Leonetti et al. in draft)

What are the Consequences?

Affects on growth and development?

(Hoffman et al. 2016- PBDEs positively associated with higher

growth rates in girls compared to boys).

Conclusions

- BFRs accumulation in the placenta appears to be sex-specific, and may have sex-specific effects on TH homeostasis
- BFRs may disrupt TH metabolism and alter T3 and rT3 levels in the placenta
 - Could this be driven by hydroxylated metabolites?
- More research is needed to understand sex specific effects of EDCs on placental function during pregnancy, and the consequences
- Next steps:
 - Are other POPs differentially accumulating in placenta?
 - What is the mechanism driving this differential accumulation?
 - Are placental BFR levels negatively associated with birth outcomes?

Acknowledgements

- Stapleton Laboratory
 - Craig Butt, PhD
 - Albert Chen
 - Ellen Cooper, PhD
 - Stephanie Hammel
 - Emina Hodzic
 - Kate Hoffman, PhD
 - Chris Kassotis, PhD
 - Erin Kollitz, PhD
 - Chris Leonetti
 - Amelia Lorenzo
 - Allison Phillips
 - Matthew Ruis

- Collaborators
 - P. Lee Ferguson (Duke University)
 - Marie Lynn Miranda (Rice University)
 - Julie Ann Sosa (Duke Cancer Institute)
 - Thomas F. Webster (Boston University)

National Institute of Environmental Health Sciences

Grant: R01 ES020430