Chemicals in House Dust: Potential Contributors to Metabolic Disorders

Chris Kassotis, PhD Postdoctoral Researcher Duke University ©cdkassotis

> CHE EDC Strategies Webinar Series October 18, 2017

Outline

Metabolic Syndrome & Molecular Mechanisms

- Metabolic disruptors, adipogenesis
- > Diverse Indoor SVOCs as Metabolic Disruptors
- Indoor House Dust Extracts and Metabolic Disruption

Prevalence of Obesity Epidemic in US, Globally

- Currently ~40% of US adult population is obese.
 - ~9% infants/toddlers
 - ~19% of 2-19 year-olds
- >\$215B in US health care costs (2010)
- Increased comorbidities
 T2D, CVD, hypertension
- Interventions have produced only modest effects

Potential Role of Chemicals in Increasing Obesity Rates in Humans

- First posited in 2002, despite decades of experimental evidence.
- Challenges caloric intake, activity, genetics as sufficient factors to explain magnitude/speed of observed trend.
- Summarizes wealth of animal evidence on antibiotics, PCBs, plastics, pharmaceuticals, pesticides, organophosphates, heavy metals, etc.

DO CHEMICAL TOXINS CAUSE OBESITY?

Baillie-Hamilton et al. 2002, J Alt Comp Med

Normal Hormonal Function

Adipocyte Differentiation Process

PPARγ-Dependence of Adipocyte Differentiation

Fu et al. 2005, Mol Endo

Hours

Days

Potential Mechanisms of Metabolic Dysfunction

 Numerous potential mechanisms of metabolic disruption:

- Adipocyte commitment from MSCs
- Adipocyte differentiation from precursor cells
 - Increased pre-adipocyte proliferation
 - Increased lipid uptake
- Shifting energy balance to favor calorie storage
- Altering basal metabolic rate
- Altering hormonal control of appetite and satiety
- Altering brain circuitry that controls food intake, energy expenditure

Heindel et al. 2017, Repro Tox

Diethylstilbestrol and Developmental Exposure

- Synthesized 1938
- Pregnant women, 1940's-1971
- Growth hormone (livestock), 6o's-7o's
- Adverse health outcomes (children):
 - Vaginal clear cell adenocarcinoma, reproductive tract malformations, infertility, testicular cancer

Source: Melnick et al, 1987 and Market Share Litigation Exhibit

Yes... CLOSPLEX to prevent ABORTION, MISCARRIAGE and PREMATURE LABOR

"Really?"

recommended for routine prophylaxis in ALL pregnancies . .

> x with 25 mp, of distriputibuting U.S.P., if to smooth and eccelerate absorption and alternitorestand distriputibuting is a seen into the resource prompt help in amergenesis, in vitamin C and certain mambers of the minimum in preparate and the effective institution in preparate and the effective.

COMPANY, INC., Brooklyn 26, N.Y.

DES and Metabolic Disruption

- DES promotes triglyceride accumulation in *in vitro* models.
 - Appears to occur through an estrogenic mechanism
 - DES induces adipogenic regulators and markers in vitro.
- Gestational & perinatal DES exposure in mice increases body weight throughout life.
 - Increased body fat, altered serum profiles
- Some evidence for increased risk of obesity in adults exposed prenatally (Hatch et al., 2015, others).

Hao et al. 2012, Tox App Pharm

Indoor SVOCs as Metabolic Disruptors

3T3-L1 Pre-adipocyte Adipogenesis Assay

- Swiss albino mouse embryonic fibroblast cell line committed pre-adipocytes
- > Extensively used over decades to evaluate adipogenesis
 - Mechanisms of adipocyte differentiation well understood
 - This assay, particularly coupled with PPARγ reporter gene assays, has proven reliable for predicting metabolic disruption *in vivo*.
- Limitations:
 - Length of differentiation window: ~2 weeks
 - > Depends on contact inhibition to arrest cell cycle and differentiate
 - > Fails to incorporate other mechanisms of metabolic disruption

Adipogenesis Induction Timeline

Adipogenesis Assay Measures

Triglyceride (lipid) accumulation

- AdipoRed hydrophilic fluorescent dye (Nile Red)
 - Partitions into lipid droplets in the cells, fluoresces

(A)

(B)

- Cell proliferation/cytotoxicity
 - NucBlue DNA dye (Hoechst 33342)
 - Partitions into nuclei and fluoresces upon binding DNA

(C)

Rosiglitazone Control Adipogenesis Assay Results

- Triglyceride accumulation per well total response, normalized to maximal rosiglitazone-induced response.
 - Measure of whether chemical stimulates incorporation of lipids (fat cell size)
- Cell proliferation DNA content relative to differentiated vehicle control (0.1% DMSO).
 - Measure of whether chemical stimulates increased number of fat cells
- Triglyceride accumulation per cell response normalized to DNA content, normalized to maximal rosiglitazone-induced response.

Brominated and Organophosphate FRs Promote Substantial Fat Cell Development

Several Phthalates and Pesticides Promote Significant Fat Cell Development

Perfluorinated Compounds and Parabens Induce Limited Fat Cell Development

Indoor House Dust Extracts and Metabolic Disruption

- Seven of 11 extracts exhibited significant triglyceride accumulation.
- Nine of 11 extracts exhibited significant pre-adipocyte proliferation.
- One of 11 extracts exhibited no significant adipogenic activity.

Summary of Findings

- >2/3 of the semi-volatile indoor contaminants were active in promoting triglyceride accumulation and/or pre-adipocyte proliferation.
 - > PFRs exhibit much greater activity than the majority of the BFRs.
 - BFRs are generally weakly adipogenic, though novel BFRs (TBPH, TBBPA, TDBPIC) are more active than legacy PBDEs.
 - Pyraclostrobin, TBPDP, and DBP were the most active chemicals tested.
 - Several appear to exhibit effects through mechanisms other than PPARy
 - PFASs, phenols, parabens exhibited minimal activity overall.
 - Previous work found moderate activity for bisphenols (TBBPA, BPAF, etc.)
- Many house dust extracts exhibited significant triglyceride accumulation and pre-adipocyte proliferation at < 10 μg.</p>
 - Children estimated to consume ~50 mg of dust each day (EPA)

Future Directions, Next Steps

Assessing activity of larger numbers of house dust samples.

- CIE cohort (n=~150), TESIE cohort (n=~200)
- Assessing mechanisms through which house dust promotes fat cell development.
 - Causative constituent chemicals
 - Causative molecular pathways
- Assessing relationships between house dust driven fat cell development and metabolic health outcomes in residents.

Acknowledgements

Stapleton Lab

- Heather Stapleton, PhD
- Erin Kollitz, PhD
- Kate Hoffman, PhD
- Ellen Cooper, PhD
- Allison Phillips
- Stephanie Hammel
- Matt Ruis
- Emina Hodzic
- Amelia Lorenzo
- Kirsten Overdahl
- Sharon Zhang
 - Funding
 - > NIEHS Ro1 ES016099-06

National Institute of Environmental Health Sciences